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Abstract

In this paper we report the investigations on a problem related
to DNA dynamics: t,herrnal generation of localized pulses that are called

9olitonsm

The thermal generation of solitons in circular homogemmus DNA

is investigated by calculating the number of oolitons aa a function of the
absolute temperature. These calculations are effected by using two differcrk
models for the DNA molecule. In both models the parameters are chosen
to match experimentally measured properties of the molecule. We find that

a significant number of oolitona is generated at physiological temperatures,
and a 7’1/3 law is followed at low temperatures.
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Introduction

The understanding of energy transport along linear-chain molecules is a

long-standing problem that remains of great interest. Molecular dynamics simula-

tions have explored moderately enharmonic motion of short strands of deoxyribonu-

cleic acid (DNA ) molecule near thermal equilibrium [1], and solitons have been sug-

gested by several researchers [2-7]. In the problem of solitons playing a role in the

dynamics of DNA, there is a particular aspect related to the question if solitons are

generated thermally at physiological temperature. In this work we report on studies

performed in order to answer to this question. Two simple nonlinear spring and mass

systems are used to model longitudinal wave propagation on a homogeneous circular

DNA molecule at different temperatures [8-12]. In the first model we consider the

DNA molecule as a one-dimensional Toda lattice with parameters chosen to match

experimentally rne=ured properties [8-1 I]. The second model is & t w~dimensional

one [12]. In this case we represent the DNA by two Toda chains linked together

through springs with restoring force described by a Lennard-Jones potential [13-16].

Again the parameters are cktosen to match experimentally measured properties of the

molecule.

The one-dimensional model

Here the DNA is modeled as a Toda lattice [8-11]. Each particle in the lattice

represents a single base pair, and the nonlinear spring represents the Van der Waals

potential between adjacent base pairs. Therefore considering a homogeneous system

C! N masses (each with mass M), whose longitudinal positions are denoted by y“(t),

n = 1,2 ,.,., N, and cunnected to their nearest neighboum with massless no,llinear

springs of potential V(gh - yn_l ), Newton’s second law for the longitudinal motion

of the masses is the set of ordinary differential equations

(1)

Here dot denotes time differentiation and prime indicates a derivative with respect

to the argument. gIO and UN+I Hati~fy the periodicity condition, The exponential

potential user! by Toda [17] is
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V(yn+l - y.) =
a
~exp[-b(yn+l –yn)]+a(yn+l -yn) (2)

which has the nature of physical atomic forces for a and b positive parameters. More-

over the Toda lattice is exactly integrable [17], and well developed analytical and

numerical techniques can be used to efficiently count the number of solitons. Indeed

here the method to count the solitons in a periodic chain is the spectml analyzer,

based on the inverse spectral theory for the Toda Iattia [17]. The spectral analyzer

of the Toda lattice, described in detail elsewhere [8,1O], has been used through out

the computations to count the number of solitons present in the system. And we have

assumed that the method still works for the perturbed versions of the Toda lattice.

By fitting the Toda potential to a 6-12 Van der Wads potential am-i con-

sidering experimentally measured properties of DNA [8-11], it is found that the mass

M of each particle representing a base pair is lkf = 1.282 x 10-24 kg, the nonlinear

parameter b is 6.176 x 10IOm-l and the parameter a is 5,127 x 10-lON.

Two different approaches to the thermalization of the DNA molecule have

been considered. At first, by assuming the amount of total energy in the system

equal to kBT (here kB is the Boltzmann constant and T is the absolute temperature

measured in f{), the system is thermalized by choosing the init~al displacement of the

masses and their initial velocities from Gaussian random distributions, whose vari-

ances are related to the absolute temperature T [8- 10]. It is found that a significant

number of solitons, Ns, is generated at physiological temperature. Morcmver, at low

temperature, a T1/3 law is found for the dependence of the number of solitons on the

temperatl!re [8-1 1]. A typical curve is shown in figure 1 where log(N~/N) is plotted

versus log(l’). The full line is the curve computed for a normalized version of the

unperturbed equations (1), for IV = 65000 and with initial conditions such that the

total energy is only kinetic energy. At physiological temperature, 3101{, the ratio

Ns/iV has a value approximately equal to 0,31.

In the second approach to thermalization, in order to describe the interaction

of the system with a thermal reservoir at a finite temperature, a damping and a noise

force which simulate a thermal bath are added to the equations of motion for the

molecular displacement, thereby obtaining Langevin equations [18,19].

the equation of motion of each particle is given by the perturbed Toda

hf~n = “(Vn+l - tin) - “(Yn - Vn-1) - ‘irYn + Vn(t)!
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Then [10,11]
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where 17 is the damping coefficient and qn(t) is the random force, assumed to be

Gaussian process with zero mean and correlation function O( the form

Here 6nfi~;9 the Kronecker delta symbol and 6(t -- i’) is the Dirac delta function.

Numerical integration of a normalized version of the perturbed equations of

motion (3), with different values for the normalized damping coefficient cr, given by

a = Ffi, shows that, when thermal equilibrium is reached, in a system of ~ = 32

masses, the same significant number of solitons is generated in DNA at physiological

temperature [10,11], mrnely lVs/A’ a 0.31.

Moreover from dynamical simulations for a system with N = 32, at different

temperatures T, and at various a’s it is found a good agreement with the T*/3 law

obtained as dependence of the number of solitons on the temperature [10,1 1]. A

typical case is shown in figure 1 where log(NS/N) is plotted versus log(Z’), The

values denoted by the circle, the square and the triangle have been calculated for the

normalized version of th~ perturbed equations (3), with a number of msasea N = 32

and normalized ~lampi ng coefficients a = 5.0, a = 3.0 and a = 0.85, respectively.

Moreover we note that a study on how the number of solitons depends on

the number of mtaes in this one-dimensional system has been considered in [11].

The two-dimensional model

Here the DNA is described by two chains transversally coupled, where each

chain simulate one of the two polynucleotide strands of the DNA molecule [12]. Each

of the two chains is a spring and mass system. Each msss of the model repre-

sents a single bsse of the base pair. As in the above mentmned one-dimensional

mcdel, the longitudinal springs, connecting mmses of the same strand, represent the

Van der Waals potential between adjacent base pairs. The transverse springs, con-

necting corresponding rnMSIIZ of the two strands, represent the hydrogen bonds that

connect the two baaea in a pair, Again we assume to deal with a homogeneous DNA

molecule, therafore each particle in our mass and spring system has mass ~, and the

springu arc aiwu[ned to be masslese.

For each base pair, tlm model includes four degrees of freedom, u“, ~.,

~nd Vn, y,,, for the two strands, respectively. The un = u,,(t) Wd ~’” = t’,,(~),

4



n = 1,2,..,, N denote the transverse displacements, namely they correspond to the

displacements of the basea from their equilibrium positions along the direction of

the hydrogen bonds that connect the two bases of the base pair. The ~n = z.(i)

and yn = yin(i), n = 1,2, ..., N denote the longitudinal displacements, namely they

correspond to the displacem~.lts of the bases from their equilibrium positions along

the direction of the phosphodiester bridge that connect the two bases of the same

strand.

As in the previous model, the enharmonic Van der Waals potentials are cie-

scribed by the Toda potential. Denoting by J and 11 the two strands, the enharmonic

potentials are given by

and

for the two sdrands, respectively.

In expressions (5) and (6) & and &are parameters which

hloreover in the above expressions lL is the equilibrium distance

(5)

will be given later.

between two bases

in the same strand, namely it is the distance along the helix axis between a4ja-

cent base pairs, (IL = 3.4A[20]). Finally l; denotes the distance between two

bases in the sttand denoted by 1, and similarly for f; in the strand denotes by

11, Their expressions are given by 1: = J(1L + z.+, - Zn)z + (un+l - Un)z and
t#

ln=~ (IL + y“+, - ~“)2 + (un+, - Un)2, respectively.

The two bases in a pair are connected through hydrogen bonds which we

model by a Lennard-Jones potential. This type of potential is generally accepted to

model the effect of hydrogen bonds [13- 16]. Thus the anhurrnonic potential for the

transverse springs modeling the hydrogen bonds is given by

In expression (7) c and u are parameters which will be given later, The

lcnght of the hydrogen bond between the two bnses in a pair is given by t: - /T+ 11/.
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Here t; denotes the distance between two bases of the two strands and its expression is

given by i: = ~(1~ + V“ - ‘U”)*+(?J~ —Z“) 2. Moreover lT is the equilibrium distance

between adjacent bases in a pair, namely the diameter of the helix, (~T = 20A [20]),

and /H = 21/Gc7is the equilibrium length of the hydrogen bond.

As above, by fitting the Toda potential to a 6-12 Van der Waals potential and

considering experimentally measured properties of DN’A, it is found [12] that the m~s

ilf of each base is if = 6.41 x 10-Z5 kg, the nonlinear parameter &is 6.176 x 10IOm-~

and the parameter 6 is 2.5635 x 10-lOfV. And for th> Lennard-Jones’ parameters,

the values e = e~J = 0.22 eV = 0.35244 x 10-19 Nrn and u = 4.01 x 10-10 m can be

considered [12].

The equations of motion for the system described above are obtained from

the Hamiltonian of the system

N

~ = ~ [T. + vT,I(~~ – IL)+ vT,lI(~~ - ~L) + vL./(~~ – IT+ IH)] t (8)
n=l

where N is the number of base pairs in the DNA molecule. The kinetic energy Tn is

given by

T. = ;Al(i: + u:) + $7(y: + u:) , (9)

and the enharmonic potentials V~,](~n - IL), V~,lJ(~~ - IL) and VLJ(t~ – /T+ IH) are

given by expressions (5), (6) and (7), respectively.

In order to decribe the interaction of the

at a finite temperature, a damping force and a noise

of motion for the molecular displacements [18,19].

[f we denote by d$$), i = 1,2,3,4 and n

system with a thermal reservoir

force are added to the equations

= 1,2,..., N, the displacement
(2)

variables, namely d$) = Zn, dn (i@ = y“, # == Uny n ~nt the equations of motion

derived from the Hamiltonian (8) cm be briefly written as

fidy) = _ Of(
&f(() ‘

where i = 1,2,3,4, and n = 1,2,...,N.

0

(10)



Therefore to describe the interaction of the system with a thermal reservoir

at temperature T, a darnping force and a noise force are added to eqs. (10), namdy

(11)

Here 17is the damping coefficient and q:)(t), i = 1,2,3,4, are the random forces acting

ou the bases. For the noises q$)(t) it is assumed that they are gaussian processes with

zero mean and that their correlation function hw the form

(J?(t) T#)(i’)) = ifrkB~

Then the equations of motion for the

perturbed version of system (1O), namely

6nn’‘ij 6(t–“) . (12)

system of particles are given by the

(13)

where i = 1,2,3,4, and n = 1,2,...,N.

ItL order to compute the number of solitons (Ns) in the double chain, we

have averaged on the valuea for the number of solitor~s in each one of the two chains.

The latter values have been computed using again the spectral analyzer of the Toda

lattice. Our typical results are shown in figure 2, where log( JVs/fV) ia plotted versus

log(?’) for different choices of the Lennard-Jones parameter .s. In particular the

perturbed system (13) chosen as model of the double chain irnmerged in a thermal

bath has been integrated for a number of maases fV = 32 for each of the two identical

chains, and with a damping coefficient a = 1.0. The valuea denoted by the square

are computed for c = eL~/ 10, and the ones denoted by diamond are computed for

&= c~J/5. The other parameters in system (13) are the ones considered for the DNA

molecule.

In figure 2 the present results are compared with the ones obtained with the

one-dimensional model. In particular the full line describes the results obtained using

the simple unperturbed Toda lattice. And the values denoted by the cross are the

results obtained considering the perturbed model, with a damping coefficient a = 1.0

and a number of masses N = 32.

These results show that, when thermal equilibrium is reached, in a chain ef

= 32 masses, approximately the same significant number of solitons is generated in

7



DNA at physiological temperature, namely Ns/N s 0,335. Moreover from dynamical

simulations for a system with N = 32 and at different temperatures ‘T, it is found a

good agreement with the Z’113law obtained as dependence of the number of solitons

on the temperature, again for temperatures less than 100K [8-12].

Finally it is important to note that this tw-dimensional system has been

considered [12] as model for the denaturation of the DNA molecule, with particular

attention to the phenomenon known as melting, that is when the two sdrands of the

DNA helix readly come apart.

Conclusions

In this work we have presented a study on the thermal generation of solitons

in DNA, considering two different models for the DNA dynamics.

The first model is a one-dimensional representation of DNA. The molecule

is thought as a simple one-dimensional system of masses and spring, with restoring

forces obtained by the exponential Toda potential. Each mass in the system represent

a base pair.

The second model is a two-dimensional representation of the molecule. In

this case the DNA is thought as two chains of masses and springs, with exponential

Toda restoring forces, linked transversally together through springs with restoring

force described by a Lennard-Jones potential, Each mass in the system represent a

base of a pair of the molecule.

With the one-dimensional model, two different approaches to thermaliza-

tion h%ve been considered. The first approach is realized by choosing random initial

distributions for the displacements and the velocities of the masses such that the total

energy in the oystem is kBT. On the other hand the second approach to thermal-

ization is performed perturbing the equations of motion with a damping force and

a noise force to model the interaction of the DNA molecule with a thermal reser-

voir at temperature T, Only this second approach to thermalizatiofi is used for the

two-dimensional modeL

Using these models we have analyzed the dynamics of a short homogeneous

circular DfVA molecule of 32 b~e pairs. In both cases it is found that a significant

number of solitons, more than 1/3 of the number of base pairs, is generated at physi-

ological temperature. Moreover we have observed that the number of solitons follows

the power law Ns a T’/3, for a wide temperat~re range, namely for T < 100K.
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Figure Captions

Figure 1. Logarithm to base 10 of the ratio Ns/IV vereus the logarithm to base

10 of the temperature measured in K. The full line is the curve calculated for the

unperturbed equations (1], with a number of masses in the Toda chain N = 65000,

and initial conditions such that the total energy is only kinetic energy, The values

denoted by the circle, the square and the triangle are calculated for the perturbed

equations (3) for the vtiue of the normalized damping coefficients a = 5.0, ~ = 3.0

and a = 0.85, respectively, and with a numLer of m~ses N = 32.

Figure 2. Logarithm to base 10 of the ratio Ns/N versus the logarithm to base

10 of the temperature T measured in K. The fuU line is the curve calculated for

the unperturbed (one-dimensional) equations (1), with a number of masses in the

Toda chain N = 65000, and initial conditions such that the total energy is only

kinetic energy. The values denoted by the crosses are the ones obtained from the

perturbed (one-dimensional) system (3) for a damping coefficient ct = 1.0 and a

number of masses N = 32, The values denoted by the square and the diamond are

calculated f( r the perturbd (two-dimensional) system (13) with DIVA parameters,

and Lennard-J”. nes parameter e equal to E = s~~/10 and c = e~~/5, respectively.

Damping coefficients Q = 1.0, and N = 32 masses in each chain.
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